
Q.

A truncated cone with its vertex at origin $(a < r < b; \theta = \theta_{0,0} < \varphi < 2\pi)$, as shown in the figure, has a surface current density $\overline{K}_s = K_o \hat{a}_{\varphi}$ (K_o is a constant). Using Biot-Savart's law given by:

$$\overline{H} = \int_{s}^{\square} \frac{\overline{K} \times (\overline{r} - \overline{r}')}{4\pi |\overline{r} - \overline{r}'|^{3}} ds'$$

Derive the expression for the magnetic field intensity at the origin. Show all steps in the derivation including the determination of the vectors \bar{r} , \bar{r}' , $\bar{K} \times (\bar{r} - \bar{r}')$ and the scalars $|\bar{r} - \bar{r}'|$ and ds'.

