

1. [12 Marks] Consider the table of values below for three rules f , g , h that assign numbers to the numbers in the interval $[0, 4]$. Use only the data from this table to answer the following questions.
JUSTIFY YOUR ANSWERS.

x	0	1	2	3	4
$f(x)$	3	5	-2	-1	4
$g(x)$	2	3	1	6	3
$h(x)$	± 1	-4	-2	1	2

(a) Which of f , g , h is definitely not a function on $[0, 4]$?

Solution h can not be a function because because $h(0)$ is both -1 and $+1$. By its definition, a function can not assign two different values to one number.

(b) Which of f , g , h can be a function which is not one-to-one on $[0, 4]$?

Solution Since $g(1) = g(4) = 3$, the function g is not one-to-one.

(c) Assume f , g , h are continuous functions on $[1, 2]$. Which of f , g , h must have a root r with $1 < r < 2$?

Solution Since f is continuous on $[1, 2]$, $f(1) = 5$, $f(2) = -2$ and $5 > 0 > -2$, the Intermediate Value Theorem says that there is some $r \in (1, 2)$ such that $f(r) = 0$.

(d) Assume f , g , h are continuous functions on $[1, 4]$. Which of f , g , h must have a critical point in $(1, 4)$?

Solution If g is not differentiable at some number $c \in (1, 4)$, then $x = c$ is a critical point of g . If g is differentiable on $(1, 4)$, we have $g(1) = g(4) = 3$. By Rolle's Theorem, there is $c \in (1, 4)$ such that $g'(c) = 0$. Then $x = c$ is a critical point of g .

2. [10 Marks] (a) Why does the polynomial $P(x) = x^3 - 3x + 1$ have a root between zero and one?

Solution Observe that $P(1) = -1$ and $P(0) = 1$. Since $P(x)$ is continuous on $[0, 1]$ and $-1 < 0 < 1$, the Intermediate Value Theorem says that $P(x)$ has a root between 0 and 1.

(b) Use the bisection method once to find an approximation of a root of $P(x) = x^3 - 3x + 1$ between zero and one.

Solution $P(0) = 1$, $P(1/2) = 1/8 - 3/2 + 1 = -3/8$ and $P(1) = -1$. By the Intermediate Value Theorem, $P(x)$ has a root between 0 and $1/2$.

3. [36 Marks] Use any method to evaluate each of the following limits.

(a) $\lim_{x \rightarrow 0} \frac{x - \sin x}{\arctan x - x}$

Solution Substitution of $x = 0$ produces $\frac{0}{0}$. Hence we apply L'Hopital's Rule.

$$\begin{aligned} \lim_{x \rightarrow 0} \frac{x - \sin x}{\arctan x - x} &= \lim_{x \rightarrow 0} \frac{D(x - \sin x)}{D(\arctan x - x)} = \lim_{x \rightarrow 0} \frac{1 - \cos x}{\frac{1}{1+x^2} - 1} \cdot \frac{1+x^2}{1+x^2} \\ &= \lim_{x \rightarrow 0} \frac{(1+x^2)(1-\cos x)}{1-(1+x^2)} = -\lim_{x \rightarrow 0} \frac{(1+x^2)(1-\cos x)}{x^2} \end{aligned}$$

Substitution of $x = 0$ in the latter limit produces $\frac{(1)(1-1)}{0} = \frac{0}{0}$. Hence we apply L'Hopital's Rule again.

$$\begin{aligned} \lim_{x \rightarrow 0} \frac{x - \sin x}{\arctan x - x} &= -\lim_{x \rightarrow 0} \frac{D[(1+x^2)(1-\cos x)]}{D(x^2)} \\ &= -\lim_{x \rightarrow 0} \frac{2x(1-\cos x) + (1+x^2)\sin x}{2x} \end{aligned}$$