Practice Worksheet: Graphing Quadratic Functions in Intercept Form

For #1-6, label the x-intercepts, axis of symmetry, vertex, y-int., and at least one more point on the graph.

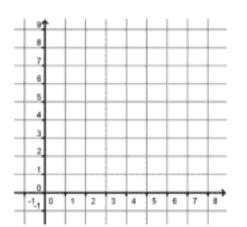
1] $y = \frac{1}{2}(x+4)(x-2)$

a = p = q =x-intercepts: (____, 0) (____, 0)

Axis of Symmetry is x=_____

Slope to pt one unit from vertex:

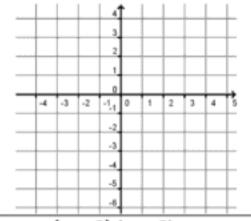
Vertex: (____, ___)


Opens up or down?

y-intercept: (0,____)

2] $y = -\frac{1}{2}x(x-8)$ a = p = q =x-intercepts: (____, 0) (____, 0) Axis of Symmetry is x=_____

Vertex: (____, ___)


Opens up or down? Slope to pt one unit from vertex: y-intercept: (0,____)

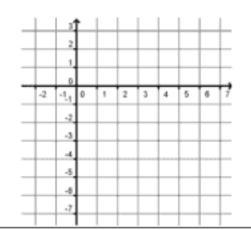
1	3] $y = (x+2)(x-2)$			
	a =	p =	q =	
x-intercepts: (, 0) (, 0)	
	Axis of Symmetry is x=			

Vertex: (____, ___)

Opens up or down? Slope to pt one unit from vertex: y-intercept: (0,____)

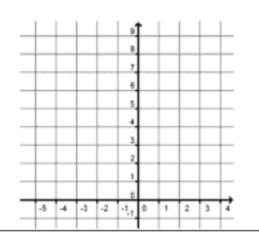
4] $y = -\frac{1}{3}(x+1)(x-5)$ p = q =x-intercepts: (_____, 0) (_____, 0)

-5 -4 -3 -2 -1 0 1 2 3 4

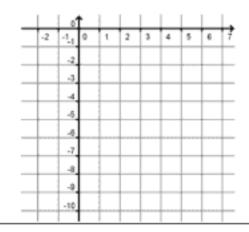

Axis of Symmetry is x=_____

5] y = 4(x+2)(x+1)a = p = q =x-intercepts: (_____, 0) (_____, 0) Axis of Symmetry is x=_____

6] y = -(x - 3)(x - 3)a = p = q =x-intercepts: (_____, 0) (_____, 0) Axis of Symmetry is x=_____


Vertex: (___, ___)

Opens up or down? Slope to pt one unit from vertex: y-intercept: (0,____)


Opens up or down? Slope to pt one unit from vertex: y-intercept: (0,____)

Vertex: (____, ___)

Opens up or down? Slope to pt one unit from vertex: y-intercept: (0,____)

Vertex: (____, ___)

