Interpreting Vertex Form and Standard Form

Practice and Problem Solving: A/B

Determine if each function is a quadratic function.

1.
$$y = 2x^2 - 3x + 5$$

2.
$$y = 2x - 4$$

3.
$$y = 2^x + 3x - 4$$

Write each quadratic function in standard form and write the equation for the line of symmetry.

4.
$$y = x + 2 + x^2$$

5.
$$y = -1 + 2x - x^2$$

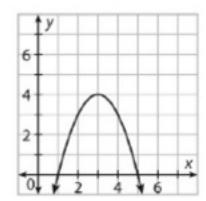
6.
$$y = 2x - 5x^2 - 2$$

Change the vertex form to standard quadratic form.

7.
$$V = 2(x+3)^2 - 6$$

8.
$$y = 3(x-5)^2 + 4$$

Use the values in the table to write a quadratic equation in vertex form, then write the function in standard form.


The vertex of the function is (1, -3).

X	У
-1	17
0	2
1	-3
2	2
3	17

The vertex of the function is (-3, -2).

x	У
-1	14
-2	2
-3	-2
-4	2
-5	14

The graph of a function in the form $f(x) = a(x - h)^2 + k$ is shown. Use the graph to find an equation for f(x).

