Code : 041	Roll No.

- Please check that this question paper contains 5 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains 38 questions.
- · Please write down the Serial Number of the question before attempting it.

MATHEMATICS-X Sample Question Paper-02

Time Allowed: 3 hours Maximum Marks: 80

GENERAL INSTRUCTIONS:

- 1. This Question Paper has 5 Sections A-E.
- 2. Section A has 20 MCQs carrying 1 mark each.
- 3. Section B has 5 questions carrying 02 marks each.
- 4. Section C has 6 questions carrying 03 marks each.
- 5. Section D has 4 questions carrying 05 marks each.
- 6. Section E has 3 case based integrated units of assessment (04 marks each) with sub-parts of the values of 1, 1 and 2 marks each respectively.
- 7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2 marks questions of Section E
- 8. Draw neat figures wherever required. Take $\pi = 22/7$ wherever required if not stated.

SECTION-A

Section A consists of 20 questions of 1 mark each.

1. The sum of the	he exponents of prime f	actors in the prime fac	ctorisation of 196 is.	
(a) 1	(b) 2	(c) 4	(d) 6	
2. If one zero o	f the quadratic polyno	$mial x^2 + 3x + k is 2,$	then the value of k is	
(a) 10	(b) -10	(c) 5	(d) −5	
3. The value of	k for which the lines	5x + 7y = 3 and $15x +$	21y = k coincide is	
(a) 9	(b) 5	(c) 7	(d) 18	
4. The roots of	the equation $(b - c) x^2$	+ (c - a) x + (a - b) =	0 are equal, then	
(a) $2a = b +$	C	(b) $2c = a + b$		
(c) $h = a + a$	C	(d) $2h = a + c$		