Nesting — A list of dictionaries

It's sometimes useful to store a set of dictionaries in a list; this is called nesting.

Storing dictionaries in a list

```
# Start with an empty list.
users = []
# Make a new user, and add them to the list.
new_user = {
    'last': 'fermi',
    'first': 'enrico',
    'username': 'efermi',
users.append(new_user)
# Make another new user, and add them as well.
new_user = {
    'last': 'curie',
    'first': 'marie',
    'username': 'mcurie',
users.append(new_user)
# Show all information about each user.
for user dict in users:
    for k, v in user_dict.items():
        print(k + ": " + v)
    print("\n")
```

You can also define a list of dictionaries directly, without using append():

```
# Define a list of users, where each user
# is represented by a dictionary.
users = [
        'last': 'fermi',
        'first': 'enrico',
        'username': 'efermi',
    },
{
        'last': 'curie',
        'first': 'marie',
        'username': 'mcurie',
    },
# Show all information about each user.
for user_dict in users:
    for k, v in user_dict.items():
        print(k + ": " + v)
    print("\n")
```

Nesting — Lists in a dictionary

Storing a list inside a dictionary alows you to associate more than one value with each key.

Storing lists in a dictionary

```
# Store multiple languages for each person.
fav_languages = {
    'jen': ['python', 'ruby'],
    'sarah': ['c'],
    'edward': ['ruby', 'go'],
    'phil': ['python', 'haskell'],
}

# Show all responses for each person.
for name, langs in fav_languages.items():
    print(name + ": ")
    for lang in langs:
        print("- " + lang)
```

Nesting — A dictionary of dictionaries

You can store a dictionary inside another dictionary. In this case each value associated with a key is itself a dictionary.

Storing dictionaries in a dictionary

```
users = {
    'aeinstein': {
        'first': 'albert',
        'last': 'einstein',
        'location': 'princeton',
    'mcurie': {
        'first': 'marie',
        'last': 'curie',
        'location': 'paris',
        },
for username, user_dict in users.items():
    print("\nUsername: " + username)
    full name = user dict['first'] + " "
    full_name += user_dict['last']
    location = user_dict['location']
    print("\tFull name: " + full_name.title())
    print("\tLocation: " + location.title())
```

Levels of nesting

Nesting is extremely useful in certain situations. However, be aware of making your code overly complex. If you're nesting items much deeper than what you see here there are probably simpler ways of managing your data, such as using classes.

Using an OrderedDict

Standard Python dictionaries don't keep track of the order in which keys and values are added; they only preserve the association between each key and its value. If you want to preserve the order in which keys and values are added, use an OrderedDict.

Preserving the order of keys and values

```
from collections import OrderedDict

# Store each person's languages, keeping
# track of who respoded first.
fav_languages = OrderedDict()

fav_languages['jen'] = ['python', 'ruby']
fav_languages['sarah'] = ['c']
fav_languages['edward'] = ['ruby', 'go']
fav_languages['phil'] = ['python', 'haskell']

# Display the results, in the same order they
# were entered.
for name, langs in fav_languages.items():
    print(name + ":")
    for lang in langs:
        print("- " + lang)
```

Generating a million dictionaries

You can use a loop to generate a large number of dictionaries efficiently, if all the dictionaries start out with similar data.

A million aliens

```
aliens = []

# Make a million green aliens, worth 5 points
# each. Have them all start in one row.
for alien_num in range(1000000):
    new_alien_num in range(1000000):
    new_alien['color'] = 'green'
    new_alien['points'] = 5
    new_alien['x'] = 20 * alien_num
    new_alien['y'] = 0
    aliens.append(new_alien)

# Prove the list contains a million aliens.
num_aliens = len(aliens)

print("Number of aliens created:")
print(num_aliens)
```

More cheat sheets available at ehmatthes.github.io/pcc/